# CONTROLS (UK) LTD



Fine Controls have been supplying process controls & instrumentation equipment since 1994, & now serves an ever expanding customer base, both in the UK & globally.

We offer a full range of valve & instrumentation products & services, with our product rangerepresenting leading technologies & brands:

**Flow:** Flow Meters & Transmitters, Flow Switches, Flow Control Valves & Batch Control Systems

**Temperature:** Temperature Probes & Thermowells, Temperature ransmitters, Temperature Regulators & Temperature Displays

Level: Level Transmitters & Switches

**Pressure:** Pressure Gauges & Transmitters, Precision & High Pressure Regulators & I-P Converters, Volume boosters.

**Precision Pneumatics:** Pressure Regulators, I-P Converters, Volume Boosters, Vacuum Regulators

**Valves:** Solenoid & Pneumatic Valves, Control Valves & Positioners, Actuated Ball, Globe or Diaphragm Valves & Isolation Valves

**Services:** Repair, Calibration, Panel Build, System Design & Commissioning





# burkert









A rotork Brand





# Honeywell

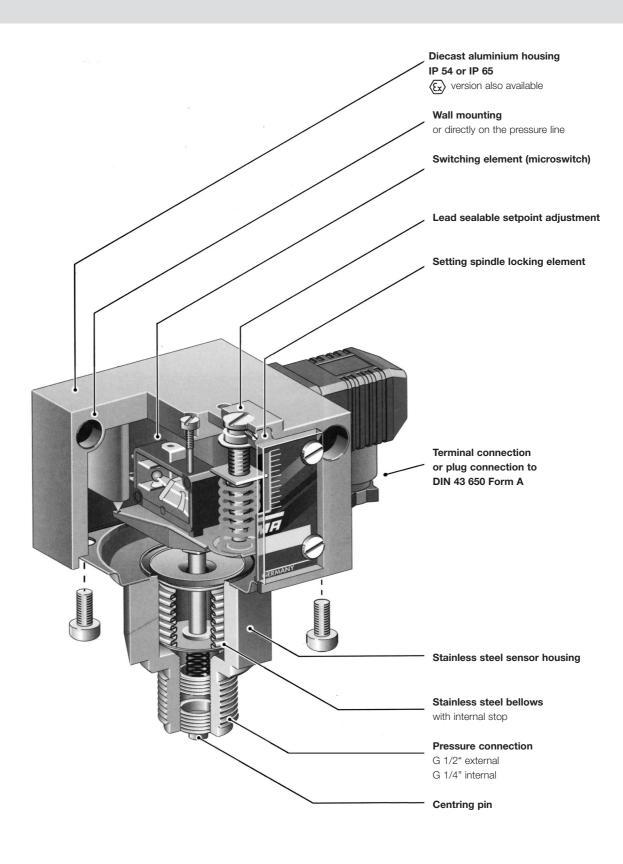














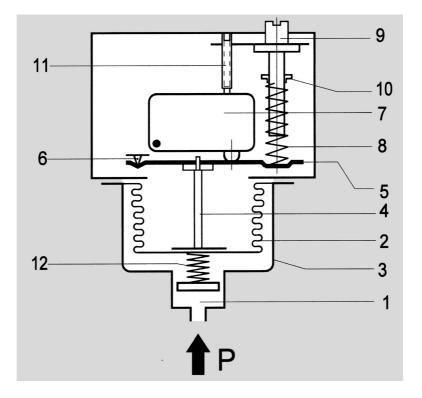

J Z Z

# Mechanical pressure switches

Technical features / Advantages






### Pressure switches

#### General description

#### Operating mode

The pressure occurring in the sensor housing (1) acts on the measuring bellows (2). Changes in pressure lead to movements of the measuring bellows (2) which are transmitted via a thrust pin (4) to the connecting bridge (5). The connecting bridge is frictionlessly mounted on hardened points (6). When the pressure rises the connecting bridge (5) moves upwards and operates the microswitch (7). A counterforce is provided by the spring (8) whose pretension can be modified by the adjusting screw (9) (switching point adjustment). Turning the setting spindle (9) moves the running nut (10) and modifies the pretension of the spring (8). The screw (11) is used to calibrate the microswitch in the factory. The counter-pressure spring (12) ensures stable switching behaviour, even at low setting values.

- **1** = Pressure connection
- 2 = Measuring bellows
- **3** = Sensor housing
- **4** = Thrust pin
- **5** = Connecting bridge
- 6 = Pivot points
- **7** = Microswitch or other switching elements
- **8** = Setting spring
- **9** = Setting spindle (switching point adjustment)
- **10** = Running nut (switching point indicator)
- **11** = Microswitch calibration screw (factory calibration)
- **12** = Counter pressure spring



#### Pressure sensors

Apart from a few exceptions in the low-pressure range, all pressure sensors have measuring bellows, some made of copper alloy, but the majority of high-quality stainless steel. Measured on the basis of permitted values, the measuring bellows are exposed to a minimal load and perform only a small lifting movement. This results in a long service life with little switching point drift and high operating reliability. Furthermore, the stroke of the bellows is limited by an internal stop so that the forces resulting from the overpressure cannot be transmitted to the switching device. The parts of the sensor in contact with the medium are welded together without filler metals. The sensors contain no seals. Copper bellows, which are used only for low pressure ranges, are soldered to the sensor housing. The sensor housing and all parts of the sensor in contact with the medium can also be made entirely from stainless steel 1.4571 (DNS series). Precise material data can be found in the individual data sheets.

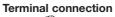
#### **Pressure connection**

The pressure connection on all pressure switches is executed in accordance with DIN 16288 (pressure gauge connection G 1/2A). If desired, the connection can also be made with a G 1/4 internal thread according to ISO 228 Part 1. Maximum screw-in depth on the G 1/4 internal thread = 9 mm.

#### Centring pin

In the case of connection to the G 1/2 external thread with seal in the thread (i.e. without the usual sheet gasket on the pressure gauge connection), the accompanying centring pin is not needed. Differential pressure switches have 2 pressure connections (max. and min.) each of which are connected to a G 1/4 internal thread.




# General technical data

#### with microswitches of the DCM, VCM, DNM, DNS and DDC series.

The technical data of type-tested units may differ slightly. (please refer to type sheet)

#### **Normal version**

#### Plug connection









|                                                                                                 | 200                                                                                                   | 300                                                   | 700                                                                                                                               |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Switch housing                                                                                  | Diecast aluminium GD Al Si 1:                                                                         | 2                                                     | Diecast aluminium GD Al Si 12                                                                                                     |
| Pressure connection                                                                             | G 1/2 external thread (pressul G 1/4 internal thread for DDC                                          |                                                       | itches                                                                                                                            |
| Switching function and con-<br>nection diagram<br>(applies only to version with<br>microswitch) | Floating changeover contact. With rising pressure switching single-pole from 3-1 to 3-2.              |                                                       | Floating changeover contact.  With rising pressure switching single-pole from 3-1 to 3-2.                                         |
| Switching capacity (applies only to version with microswitch)                                   | 8 A at 250 VAC<br>5 A at 250 VAC inductive<br>8 A at 24 VDC<br>0.3 A at 250 VDC<br>min. 10 mA, 12 VDC |                                                       | 3 A at 250 VAC<br>2 A at 250 VAC inductive<br>3 A at 24 VDC<br>0.03 A at 250 VDC<br>min. 2 mA, 24 V DC                            |
| Mounting position                                                                               | preferably vertical (see technical data sheet)                                                        |                                                       | vertical                                                                                                                          |
| Degree of protection (in vertical position)  Ex degree of protection                            | IP 54; (for terminal connection                                                                       | ,                                                     | IP 65<br>EEx de IIC T6 tested to EN                                                                                               |
| PTB approval Electrical connection                                                              |                                                                                                       |                                                       | 50014/50018/50019 (CENELEC)<br>PTB 02 ATEX 1121                                                                                   |
| Cable entry                                                                                     | Plug connection to DIN 43 65 or terminal connection (300 se                                           |                                                       | Terminal connection                                                                                                               |
| Ambient temperature                                                                             | PG 11 / for terminal connection                                                                       | ,                                                     | M 16 x 1.5                                                                                                                        |
| Switching point                                                                                 | See data sheets                                                                                       |                                                       | −15 to +60°C                                                                                                                      |
| 0 7 1 7 17                                                                                      | Adjustable via spindle. On swi<br>300 the terminal box cover m                                        |                                                       | Adjustable via spindle after the terminal box lid is removed                                                                      |
| Switching differential                                                                          | Adjustable or not adjustable                                                                          |                                                       | Not adjustable                                                                                                                    |
| Lead seal<br>Medium temperature                                                                 | (see Product Summary) Only possible on plug connect                                                   | tion housing 200                                      |                                                                                                                                   |
| Medium temperature                                                                              | Max. 70°C, briefly 85°C                                                                               | -                                                     | Max. 60°C above limits for the switching device are                                                                               |
| Vacuum                                                                                          | ensured by suitable measures All pressure switches can ope                                            |                                                       | will not damage the device.                                                                                                       |
| Repetition accuracy of switch-                                                                  | ·                                                                                                     |                                                       | C                                                                                                                                 |
| ing points Vibration strength                                                                   | < 1% of the working range (fo                                                                         | r pressure ranges > 1 bar                             | )                                                                                                                                 |
| Mechanical life                                                                                 | The expected life depends to                                                                          | cation and room tempera<br>a very large extent on the | ture, 10 x 106 switching cycles.  type of pressure application, therefore this fig pressure or pressure impacts in hydraulic sys- |
| Isolation values                                                                                | tems, pressure surge reduction Overvoltage category III, contains                                     | amination class 3, reference                          | ce surge voltage 4000 V.                                                                                                          |
| Oil and grease-free                                                                             |                                                                                                       | ches with sensors made fr                             | om steel or stainless steel are oil and grease-<br>contain no seals. (See also additional function                                |

ZF 1979 Special Packing)



# **ZF** additional functions — Pressure switches and pressure monitors



Additional functions / Connection diagrams

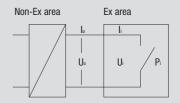
|                                                                                                                                                                                                                                                | Additional functions / Connection diagrams |                                        |                    |                                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|--------------------|-----------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                | Plug connection<br>200 series (IP 54)      | Terminal connection 300 series (IP 65) | Connection diagram | Explanation                                                           |  |  |
| Normal version (plug connection) Microswitch, single pole switching Switching differential not adjustable                                                                                                                                      |                                            | •                                      |                    |                                                                       |  |  |
| Terminal connection – housing (300)                                                                                                                                                                                                            |                                            | 301                                    | 1 2 3 🖨            |                                                                       |  |  |
| Unit with adjustable switching differential                                                                                                                                                                                                    | ZF 203                                     |                                        |                    |                                                                       |  |  |
| Maximum limiter with reclosing lockout Interlocking with rising pressure                                                                                                                                                                       | ZF 205                                     |                                        | 1 2 3 🖨            | see<br>DWR series                                                     |  |  |
| Minimum limiter with reclosing lockout Interlocking with falling pressure                                                                                                                                                                      | ZF 206                                     |                                        | 1 2 3 🖨            | see<br>DWR series                                                     |  |  |
| Two microswitches, switching in parallel or in succession. Fixed switching interval, only possible with terminal connection housing.  State the switching interval (not possible with all pressure switches, see data sheet p. 2, pp. 40 - 43) |                                            | ZF 307 *                               | I II 1 2 3 4 5 6 6 |                                                                       |  |  |
| Two microswitches, 1 plug switching in succession. adjustable switching interval Please indicate switching scheme* (not possible with all pressure switches, see data sheet p. 2, pp. 40 – 43)                                                 | ZF 217 *                                   |                                        | 1 2 3 🖨            |                                                                       |  |  |
| Gold-plated contacts, single pole switching (not available with adjustable switching differential).                                                                                                                                            | ZF 213                                     |                                        | 1 2 3 🖨            | Permitted contact<br>load:<br>Max: 24 VDC, 100 mA<br>Min: 5 VDC, 2 mA |  |  |
| Switch housing with surface protection (chemical version).                                                                                                                                                                                     |                                            | ZF 351                                 | 1 2 3 🖨            |                                                                       |  |  |

<sup>\*</sup>Switching point adjustment: Please specify switching point and direction of action (rising or falling pressure).





# $\cdot$ Housing (300) with terminal connection (IP 65), "blue" cable entry and terminals.


for EEx-i equipment ZF 5...

Additional functions

· Also available with resistor combination for line break and short-circuit monitoring (with isolating amplifier Ex 041).

#### **Important**

All pressure switches with the ZF 5... additional functions listed here can only be operated in combination with a suitable isolating amplifier (see pages 60 - 61).



For ZF513, ZF576, ZF574:  $U_i = 15 \text{ V DC}, \ I_i = 60 \text{ mA}, \\ P_i = 0.9 \text{ W}, \ C_i < 1 \text{ nF}, \ L_i < 100 \ \mu\text{H}$ 

DWAM...-576

| Additional functions for EEx-i equipment                                                                                                                    |                       | Connection diagram                    | Isolating amplifier        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|----------------------------|
| Gold-plated contacts, single-pole switching. Switching differential fixed (not adjustable). Switching capacity: max. 24 VDC, 100 mA, min. 5 VDC, 2 mA.      | ZF 513                | 1 2 3 🖨                               | Ex 011                     |
| Versions with resistor combination for line break and                                                                                                       | d short-circuit monit | oring in control current circuit, see | DBS series, pages 54 - 56: |
| Normally closed contact with resistor combination for <b>maximum pressure monitoring</b> , gold-plated contacts, plastic-coated housing (chemical version). | ZF 576                | 10 k j j j                            | Ex 041                     |
| Normally closed contact with reclosing lockout and resistor combination, for maximum pressure monitoring Plastic-coated housing (chemical version).         | <b>ZF</b> 577         | 10 k   ½,                             | Ex 041                     |
| Normally closed contact with resistor combination for <b>minimum pressure monitoring</b> , gold-plated contacts, plastic-coated housing (chemical version). | ZF 574                | 2 3 ⊕                                 | Ex 041                     |
| Normally closed contact with reclosing lockout and resistor combination, for minimum pressure monitoring Plastic-coated housing (chemical version).         | ZF 575                | 10 k                                  | Ex 041                     |

| Other additional functions                                                                                                 | Plug connection <b>200 series</b> | Terminal connection 300 series |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|
| Adjustment according to customer's instruction: one switching point two switching points or defined switching differential | ZF 1970*<br>ZF 1972*              | ZF 1970*<br>ZF 1972*           |
| Adjustment and lead sealing according to customer's instruction: one switching point                                       | ZF 1971*                          | _                              |
| two switching points or defined switching differential                                                                     | ZF 1973*                          | _                              |
| Labelling of units according to customer's instruction with sticker                                                        | ZF 1978                           | ZF 1978                        |
| Special packing for oil and grease-free storage                                                                            | ZF 1979                           | ZF 1979                        |

**Documents:** Additional documents, e.g. data sheets, operating instructions, TÜV, DVGW or PTB certificates.

| Test certificates according to EN 10 204                    |           |           |
|-------------------------------------------------------------|-----------|-----------|
| Factory certificate 2.2 based on non-specific specimen test | WZ 2.2    | WZ 2.2    |
| Acceptance test certificate 3.1 based on specific test      | AZ 3.1    | AZ 3.1    |
| Acceptance test certificate for ZFV separating diaphragms   | AZ 3.1 –V | AZ 3.1 –V |

<sup>\*</sup>Switching point adjustment: Please specify switching point and direction of action (rising or falling pressure).



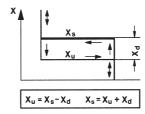
# Setting instructions

#### Factory calibration of pressure switches

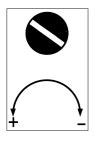
In view of tolerances in the characteristics of sensors and springs, and due to friction in the switching kinematics, slight discrepancies between the setting value and the switching point are unavoidable. The pressure switches are therefore calibrated in the factory in such a way that the setpoint adjustment and the actual switching pressure correspond as closely as possible in the middle of the range. Possible deviations spread to both sides equally.

The device is calibrated either for falling pressure (calibration at lower switching point) or for rising pressure (calibration at higher switching point), depending on the principal application of the type series in question.

Where the pressure switch is used at other than the basic calibration, the actual switching point moves relative to the set switching point by the value of the average switching differential. As FEMA pressure switches have very small switching differentials, the customer can ignore this where the switching pressure is set only roughly. If a very precise switching point is needed, this must be calibrated and checked in accordance with normal practice using a pressure gauge.


#### 1. Calibration at lower switching point

Setpoint  $x_s$  corresponds to the lower switching point, the upper switching point  $x_0$  is higher by the amount of the switching differential  $x_d$ .



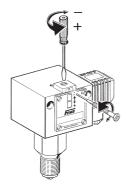

#### 2. Calibration at upper switching point

Setpoint  $x_{\rm S}$  corresponds to the upper switching point, the lower switching point  $x_{\rm U}$  is lower by the amount of the switching differential  $x_{\rm d}$ .



The chosen calibration type is indicated in the technical data for the relevant type series.




Clockwise: lower switching pressure

Anticlockwise: higher switching pressure

Setting switching pressures

Prior to adjustment, the securing pin above the scale must be loosened by not more than 2 turns and retightened after setting. The switching pressure is set via the spindle. The set switching pressure is shown by the scale.

To set the switching points accurately it is necessary to use a pressure gauge.





Direction of action of setting spindle



greater difference Anticlockwise: smaller difference

Clockwise:



With pressure switches of the DWAMV and DWR...-203 series, the direction of action of the differential screw is reversed.

#### Changing the switching differential (only for switching device with suffix "V", ZF 203)

By means of setscrew within the spindle. The lower switching point is not changed by the differential adjustment; only the upper switching point is shifted by the differential. One turn of the differential screw changes the switching differential by about of the total differential range. The switching differential is the hysteresis, i.e. the difference in pressure between the switching point and the reset point.

#### Lead seal of setting spindle (for plug connection housing 200 only)

The setting spindle for setting the desired value and switching differential can be covered and sealed with sealing parts available as accessories (type designation: P2) consisting of a seal plate and capstan screw. The sealing parts may be fitted subsequently. The painted calibration screws are likewise covered.



# Explanation of type designations - type codes

The type designations of FEMA pressure switches consist of a combination of letters followed by a number denoting the setting range. Additional functions and version variants are indicated by a code which is separated from the basic type by a hyphen. Ex versions (explosion protection EEx-d) are identified by the prefix "Ex" in front of the type designation.

| Basic version (based on the example of DCM series) | with additional function                          | Ex-version |
|----------------------------------------------------|---------------------------------------------------|------------|
| DCM XXX                                            | DCM XXX-YYY                                       | Ex-DCM XXX |
|                                                    |                                                   |            |
| DCM —                                              | Series code (e.g. DCM)                            |            |
| XXX                                                | Codes for pressure range                          |            |
| YYY -                                              | <ul> <li>Code for additional functions</li> </ul> |            |
| Ex -                                               | Code for Ex version                               |            |

| Switch housing version |                                            |
|------------------------|--------------------------------------------|
| DCM XXX                | Basic version with plug connection housing |
| DCM XXX-2              | Basic version with plug connection housing |
| DCM XXX-3              | Terminal connection housing (300)          |
| Ex-DCM XXX             | EEx-d switching device (700)               |
| DCM XXX-5              | EEx-i version                              |

#### Which additional function goes with which pressure switch?

|             | Plug connection, 200 series  Additional function ZF |     | Terminal connection,  Additional function ZF |     |            |     |            |            |       |
|-------------|-----------------------------------------------------|-----|----------------------------------------------|-----|------------|-----|------------|------------|-------|
|             | 203                                                 | 213 | 217                                          | 301 | 307        | 513 | 574<br>576 | 575<br>577 | EEx-d |
| DCM/VCM     | <b>●</b> 1                                          | •   | <b>●</b> 1                                   | •   | <b>●</b> 1 | •   |            |            | •     |
| VNM/DNS/VNS | •                                                   | •   | •                                            | •   | •          | •   |            |            | •     |
| DWAM        |                                                     | •   |                                              | •   |            | •   | •          | •          |       |
| DDCM        |                                                     | •   | •2                                           | •   | ●2         | •   |            |            | •     |
| DWR         | •                                                   | •   |                                              | •   |            | •   | •          | •          | •     |
| DGM         |                                                     | •   |                                              | •   |            | •   | •          | •          | •     |

<sup>•</sup> available

Ex-versions (EEx-d) can only be supplied in basic form. Additional functions are not possible.



 $<sup>^{\</sup>scriptscriptstyle 1}$  except DCM 4016, DCM 4025, VCM 4156 and DCM 1000

<sup>&</sup>lt;sup>2</sup> except DDCM 252, 662, 1602, 6002

## S2 type series

#### Pressure switches with 2 microswitches - technical data

FEMA pressure switches of the **DCM** (except DCM 1000, DCM 4016 and DCM 4025), **VCM** (except VCM 4156), **VNM, DNS, VNS** series and the differential pressure monitor **DDCM** (except DDCM 252, 662, 1602, 6002) can be

equipped with 2 microswitches (see also the table on page 41).

This is not possible with any other type series or with Ex versions.

#### **Technical data**

#### Standard equipment

The standard equipment of every two-stage pressure switch includes a switching device with 2 microswitches, both single-pole switching. Switch I monitors the low pressure, switch II the higher pressure. The setting ranges indicated in the data sheets for the basic types apply to the two-stage pressure switches as well. It should be noted that the switching differentials of the individual microswitches may not be exactly the same due to component tolerances.

#### Switching interval

The switching interval of the two microswitches is the difference (in bar or mbar) between the switching points of the two microswitches.

#### For example:

When the pressure rises, a two-stage pressure switch turns on a warning light (e.g. 2.8 bar), and if the pressure continues to rise (e.g. 3.2 bar) the system shuts down. The switching interval is 3.2–2.8 = 0.4 bar. For all versions the rule is:

The switching interval remains constant over the whole setting range of the pressure switch. If the switching pressure setting is changed with the setting spindle, the switching interval does not change — the switching points are moved in parallel.

#### **Switching differential**

The switching differential, i.e. the hysteresis of the individual microswitches, corresponds to the values of the relevant basic design referred to in the Product Summary. In the case of two-stage pressure switches, the switching differential of the individual microswitches is not adjustable.

#### **Versions**

Two-stage pressure switches are available in three different versions, each identified by a ZF number. The versions differ in terms of their connection schemes and electrical connection types (terminal or plug connection).

The applicable data sheet for the basic types contains the technical data for the two-stage pressure switches. This includes all limits of use, temperature, maximum pressure, mounting position, type of protection, electrical data etc. The principal dimensions are the same as for single-stage pressure switches, with similar pressure ranges and design features.

| Additional function | Switching inter-<br>val between the<br>two microswitches                            | Electrical connection                                                                                                                             | Connection diagram                                                 | Ordering information required                                                                                                                                                                                                                     |
|---------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZF 307              | Factory setting according to customer-specifications                                | Terminal connection (All terminals of both microswitches are accessible (6 terminals)                                                             | 2 x single pole switching.  I II I 2 3 4 5 6 🖶                     | 1. Basic type with ZF 307 2. Switching points I and II, with direction of action in each case (rising or falling pressure).  Example: DCM 16-307 Switching point I: 10 bar falling Switching point II: 12 bar falling or switching interval only. |
| ZF 217              | Adjustable via adjustment knobs I and II according to "Switching inter- vals" table | Plug connection according to DIN 43 650 (3-pole + ground conductor) Function-appropriate internal wiring according to "Switching functions" table | Example selection according to "Switching schemes" table, page 42. | 1. Basic type with ZF 217 2. <b>Switching scheme</b> Example: DCM 16-217/B 4 Since all values are adjustable within the specified limits, no further data is required.                                                                            |



# S2 type series (selection)

ZF 217 pressure switches with two microswitches and switching intervals

#### Switching intervals of two-stage pressure switches (ZF 217, ZF 307)

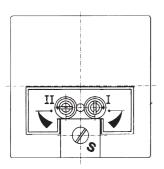
| Type series<br>S2<br>ZF 217<br>ZF 307 | min. switchin      | a interval | higher pre                                           |            | I I                        |       | wer pressure              | )    |
|---------------------------------------|--------------------|------------|------------------------------------------------------|------------|----------------------------|-------|---------------------------|------|
| Туре                                  | Factory<br>default | giinoivai  | Switching so<br>A1/A3/B2/B<br>C1/C3/D2/b<br>+ ZF 307 | cheme<br>4 | Switching so<br>A2/A4/C2/O | cheme | Switching s<br>B1/B3/D1/I |      |
|                                       |                    |            |                                                      |            |                            |       |                           |      |
| DCM 06                                | 40                 | mbar       | 165                                                  | mbar       | 190                        | mbar  | 140                       | mbar |
| DCM 025                               | 20                 | mbar       | 140                                                  | mbar       | 160                        | mbar  | 120                       | mbar |
| DCM 1                                 | 40                 | mbar       | 240                                                  | mbar       | 280                        | mbar  | 200                       | mbar |
| DCM 3                                 | 0.1                | bar        | 0.65                                                 |            | 0.7                        |       | 0.55                      |      |
| DCM 6                                 | 0.15               |            | 0.95                                                 | bar        | 1.2                        | bar   | 0.8                       | bar  |
| DCM 10                                | 0.25               | bar        | 1.6                                                  | bar        | 1.8                        | 5 bar | 1.35                      | bar  |
| DCM 16                                | 0.3                | bar        | 2.0                                                  | bar        | 2.3                        | bar   | 1.7                       | bar  |
| DCM 25                                | 0.6                | bar        | 4.0                                                  | bar        | 4.6                        | bar   | 3.4                       | bar  |
| DCM 40                                | 0.9                | bar        | 6.0                                                  | bar        | 6.9                        | bar   | 5.1                       | bar  |
| DCM 63                                | 1.3                | bar        | 8.5                                                  | bar        | 9.8                        | bar   | 7.2                       | bar  |
| DDCM 1                                | 0.09               | bar        | 0.55                                                 | bar        | 0.6                        | 4 bar | 0.46                      | bar  |
| DDCM 6                                | 0.14               | bar        | 0.94                                                 | bar        | 1.0                        | 3 bar | 0.8                       | bar  |
| DNM 025                               | 35                 | mbar       | 215                                                  | mbar       | 240                        | mbar  | 180                       | mbar |
| VCM 095                               | 40                 | mbar       | 300                                                  | mbar       | 340                        | mbar  | 260                       | mbar |
| VCM 101                               | 40                 | mbar       | 260                                                  | mbar       | 300                        | mbar  | 220                       | mbar |
| VCM 301                               | 20                 | mbar       | 100                                                  | mbar       | 120                        | mbar  | 80                        | mbar |
| VNM 111                               | 50                 | mbar       | 310                                                  | mbar       | 360                        | mbar  | 260                       | mbar |

#### Switching devices with adjustable switching interval

#### Additional function ZF 217

On switching devices with additional function ZF 217, the switching interval is continuously adjustable via two adjustment knobs I and II accessible from outside. The maximum switching intervals are stated in the "Switching intervals" table.

Turning adjustment knob I clockwise produces a lower switching point for microswitch I. Turning adjustment knob II anticlockwise produces a higher switching point for microswitch II. Adjustment knobs I and II have an internal stop to prevent the microswitches from being adjusted beyond the effective range.

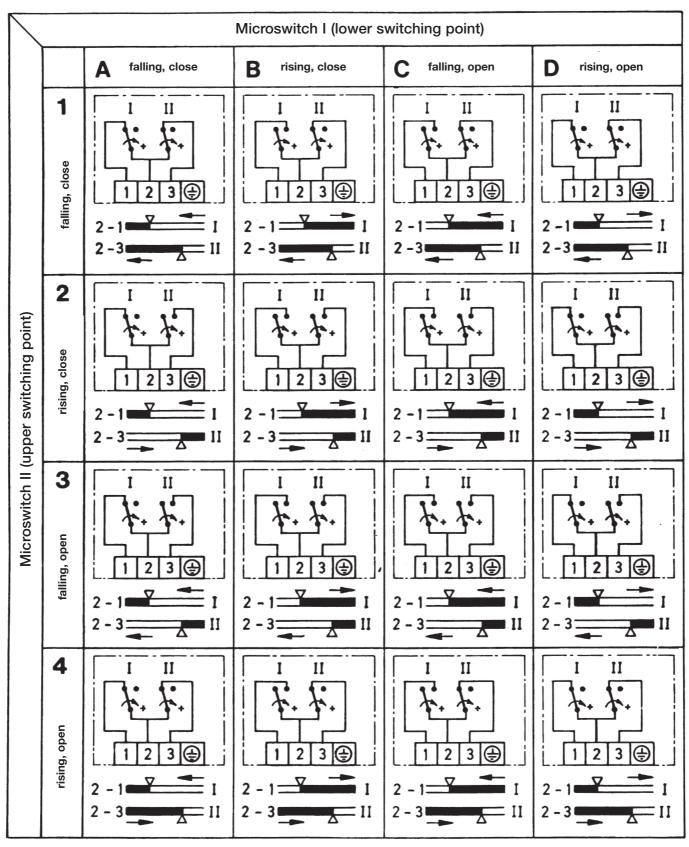

Adding together the adjustments on knobs I and II gives the switching interval between the two microswitches. Changes made with the setting spindle do not affect the switching interval. The switching interval remains constant over the whole setting range of the spindle. The two switching points are moved up or down in parallel.

#### Recommended adjustment method for switching devices with ZF 217

- 1. Set adjustment knobs I and II to their basic positions.

  Turn adjustment knob I as far as possible anticlockwise.

  Turn adjustment knob II as far as possible clockwise.
- 2. Adjust the setting spindle **S** by the scale to a value midway between the desired upper and lower switching points.
- 3. With pressure applied, set the lower switching point with adjustment knob I.
- 4. In the same way as in step 3, set the upper switching point with adjustment knob II.
- 5. If the desired upper and lower switching points cannot be reached, turn the setting spindle **S** in the appropriate direction and repeat steps 3 and 4.





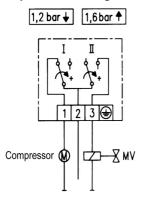

# S2 type series

#### Two-stage pressure switches, switching schemes for ZF 217

Function-appropriate internal configuration of microswitches I and II, switching scheme selection table. The switch position shown corresponds to the pressureless state. On the horizontal axis is the switching function of microswitch I (A–D); on the vertical axis is the switching function of microswitch II (1–4). At the intersection is the switching scheme which satisfies both conditions (e.g. A 2).






#### Information required when ordering:

## S2 type series

#### Examples of use for two-stage pressure switches

Pressure monitoring and controlling can be greatly simplified by using pressure monitors with two built-in microswitches which can be made to operate one after the other under rising or falling pressure. For example, minimum and maximum pressure monitoring can be achieved with only **one** pressure switch, doing away with the need for a second pressure switch (including the cost of installation). Step switching, e.g. pressure-dependent control of a two-stage pump, is of course also possible using this special series.

For pressure-dependent control of automatic expansion valves and pressure holding devices



#### Example 1:

#### Requirement

Pressure holding devices and automatic expansion valves usually have a gas cushion whose pressure must be kept constant within a certain range. If the pressure is too low, a compressor is switched on. If the pressure is too high, a solenoid valve must be opened to vent the gas. Between these two levels is a neutral zone, in which the compressor and the solenoid valve are at rest.

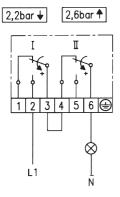
#### Solution

All pressure switches of types DCM, DNM, DNS, each with additional function ZF 217 and switching scheme A 2, are suitable. All pressureranges listed in the technical documents are possible. Example for ordering: DCM 6-217/A 2

#### Switching function / connection scheme

Switch I: With falling pressure, contact 1–2 closes (compressor on)

With rising pressure, contact 1 -2 opens (compressor off)


Switch II: With rising pressure, contact 2–3 closes (valve open)

With falling pressure, contact 2 -3 opens (valve closed).

In between there is a neutral zone in which the compressor is not switched on

and the solenoid coil is not energized (off position).

# Minimum and maximum pressure monitoring in a nitrogen line



#### Example 2:

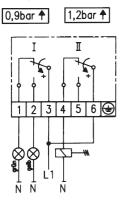
#### Requirement

In a process engineering system, the pressure in a nitrogen line has to be monitored. A green signal lamp indicates that the pressure in the line is between 2.2 and 2.6 bar. If the pressure goes below 2.2 bar or above 2.6 bar, the indicator lamp goes out and the system shuts down.

#### Solution

The first contact of a DCM 3–307 pressure switch with 2 microswitches opens under falling pressure at 2.2 bar; the second microswitch opens under rising pressure at 2.6 bar. If the pressure is >2.2 bar and <2.6 bar, the circuit is closed via both microswitches and the signal lamp is lit.

#### Example 3:


#### Requirement

The gradual fouling of a filter system is to be monitored by a differential pressure switch. Increased fouling causes a higher differential pressure between the input and the output of the filter system. A green signal lamp indicates the normal operating state. If fouling reaches a certain value (differential pressure >0.9 bar), a yellow signal lamp warns the operator that it is time to change the filter elements. If this is not done and the differential pressure rises due to further fouling (e.g. to >1.2 bar), the system must be shut down.

#### Solution

A differential pressure switch DDCM 6–307 operates under rising differential pressure (at 0.9 bar), the green control lamp goes out; at the same time the yellow lamp comes on (warning that it is time to clean the filter). If the differential pressure continues to rise (to >1.2 bar), the circuit opens via 4–6 of the second microswitch, the relay drops out and the system shuts down.

# Filter monitoring with a 2-stage differential pressure switch







# DCM pressure switches and pressure monitors

for overpressure, for non-aggressive liquid and gaseous media



**DCM 025** 

**DCM 25** 

#### **Technical data**

#### **Pressure connection**

External thread G 1/2 (pressure gauge connection) according to DIN 16 288 and internal thread G 1/4 according to ISO 228 Part 1.

#### Switching device

Robust housing (200) made of seawater-resist-ant diecast aluminium GD AI Si 12.

#### Degree of protection

IP 54, in vertical position.

#### Pressure sensor materials

| DCM 3DCM 63   | B Metal bellows: 1.4571   |
|---------------|---------------------------|
|               | Sensor housing: 1.4104    |
| DCM 025 - DCM | 1 Metal bellows: Cu Senso |
|               | housing: Cu + Ms          |
| DCM 4016/     | Diaphragm: Perbunan       |
| DCM 4025      | Sensor housing: 1.4301    |
| DCM 1000      | Diaphragm: Perbunan       |
|               | Sensor housing: Brass     |

#### Mounting position

Vertically upright and horizontal. DCM 4016 and 4025 vertically upright.

#### Ambient temp. at switching device

-25...+70 °C, except: DCM 4016, 4025, 1000: -15...+60 °C For EEx-d versions: -15...+60 °C

#### Max. medium temperature

The maximum medium temperature at the pressure sensor must not exceed the permitted ambient temperature at the switching device. Temperatures may reach 85°C for short periods (not EEx-d). Higher medium temperatures are possible provided the above limit values for the switching device are ensured by suitable measures (e.g. siphon).

#### Mounting

Directly on the pressure line (pressure gaugeconnection) or on a flat surface with two 4 mm Ø screws.

#### Switching pressure

Adjustable from outside with screwdriver.

#### **Switching differential**

Not adjustable with DCM and Ex-DCM types. Adjustable from outside with DCM-203 types. For values see Product Summary.

#### Contact arrangement

Single-pole changeover switch.

| Switching | 250   | VAC           | 250 VDC | 24 VDC |
|-----------|-------|---------------|---------|--------|
| capacity  | (ohm) | (ohm)   (ind) |         | (ohm)  |
| Normal    | 8 A   | 5 A           | 0.3 A   | 8 A    |
| FFx-d     | 3 A   | 2 A           | 0.03 A  | 3 A    |

| Туре                              | Setting range       | Switching<br>differential<br>(mean values) | •   | x.<br>missible<br>ssure | Materials in-<br>contact with<br>medium | Dimen-<br>sioned<br>drawing |  |  |
|-----------------------------------|---------------------|--------------------------------------------|-----|-------------------------|-----------------------------------------|-----------------------------|--|--|
| Switching di                      | fferential not adju | stable                                     |     |                         |                                         |                             |  |  |
| DCM 4016                          | 116 mbar            | 2 mbar                                     | 1   | bar                     | Perbunan                                | 1 + 11                      |  |  |
| DCM 4025                          | 425 mbar            | 2 mbar                                     | 1   | bar                     | + 1.4301                                |                             |  |  |
| DCM 1000                          | 10100 mbar          | 12 mbar                                    | 10  | bar                     | Perbunan + MS                           | 1 + 10                      |  |  |
| DCM 025                           | 0.040.25 bar        | 0.03 bar                                   | 6   | bar                     |                                         |                             |  |  |
| DCM 06                            | 0.10.6 bar          | 0.04 bar                                   | 6   | bar                     | Cu + Ms                                 | 1 + 14                      |  |  |
| DCM 1                             | 0.21.6 bar          | 0.04 bar                                   | 6   | bar                     |                                         |                             |  |  |
| DCM 506                           | 1560 mbar           | 10 mbar                                    | 12  | bar                     |                                         | 1 + 12                      |  |  |
| DCM 3                             | 0.22.5 bar          | 0.1 bar                                    | 16  | bar                     |                                         | 1 + 18                      |  |  |
| DCM 6                             | 0.56 bar            | 0.15 bar                                   | 16  | bar                     |                                         | 1 + 10                      |  |  |
| DCM 625                           | 0.56 bar            | 0.25 bar                                   | 25  | bar                     |                                         | 1 + 17                      |  |  |
| DCM 10                            | 110 bar             | 0.3 bar                                    | 25  | bar                     | 1.4104                                  | 1 + 17                      |  |  |
| DCM 16                            | 316 bar             | 0.5 bar                                    | 25  | bar                     | +                                       |                             |  |  |
| DCM 25                            | 425 bar             | 1.0 bar                                    | 60  | bar                     | 1.4571                                  | 1 + 16                      |  |  |
| DCM 40                            | 840 bar             | 1.3 bar                                    | 60  | bar                     |                                         | 1 + 10                      |  |  |
| DCM 63                            | 1663 bar            | 2.0 bar                                    | 130 | bar                     |                                         |                             |  |  |
| Switching differential adjustable |                     |                                            |     |                         |                                         |                             |  |  |
| DCM 025-203                       | 0.040.25 bar        | 0.030.4 bar                                | 6   | bar                     |                                         |                             |  |  |
| DCM 06-203                        | 0.10.6 bar          | 0.040.5 bar                                | 6   | bar                     | Cu + Ms                                 | 1 + 14                      |  |  |
| DCM 1-203                         | 0.21.6 bar          | 0.070.55 bar                               | 6   | bar                     |                                         |                             |  |  |
| DCM 3-203                         | 0.22.5 bar          | 0.151.5 bar                                | 16  | bar                     |                                         | 1 + 18                      |  |  |
| DCM 6-203                         | 0.56 bar            | 0.252.0 bar                                | 16  | bar                     |                                         | 1 + 10                      |  |  |
| DCM 10-203                        | 110 bar             | 0.52.8 bar                                 | 25  | bar                     |                                         | 1 + 17                      |  |  |
| DCM 16-203                        | 316 bar             | 0.73.5 bar                                 | 25  | bar                     | 1.4104                                  | 1 1 17                      |  |  |
| DCM 25-203                        | 425 bar             | 1.36.0 bar                                 | 60  | bar                     | +                                       |                             |  |  |
| 201110555                         |                     |                                            |     |                         |                                         |                             |  |  |

For smaller pressure ranges see also VCM, DGM, HCD and DPS sheets. For additional functions refer to ZF data sheet.

(£x) version, (housing 700), explosion protection EEx-d

8...40 bar

16...63 bar

| Ex-DCM 4016 | 116 mbar | 2 mbar | 1 bar | Perbunan | 3 + 11 |
|-------------|----------|--------|-------|----------|--------|
| Ex-DCM 4025 | 425 mbar | 2 mbar | 1 bar | Perbunan | 3 + 11 |

For other Ex-devices, see type series VCM, DNM, DNS, DDCM, DWR, DGM described below.

2.6...6.6 bar

3.0...10 bar

60 bar

130 bar

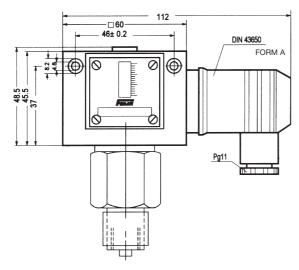
1.4571

DCM 40-203

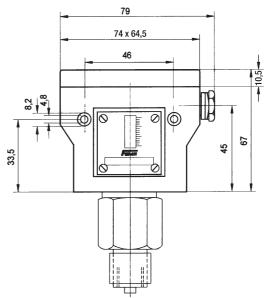
DCM 63-203

The **DCM** series is calibrated for falling pressure. This means that the adjustable switching pressure on the scale corresponds to the switching point at falling pressure. The reset point is higher by the amount of the switching differential. (See also page 30, 1. Calibration at lower switching point).

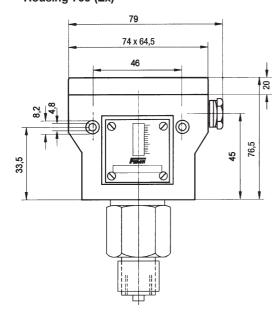




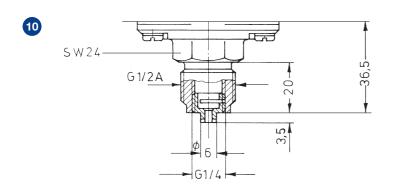




1 + 16

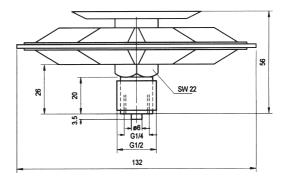
# Dimensioned drawings of switch housings


1 Housing 200 (plug connection)




2 Housing 300 and 500 (terminal connection)

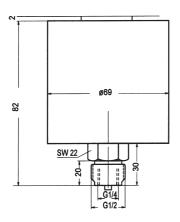



3 Housing 700 (Ex)

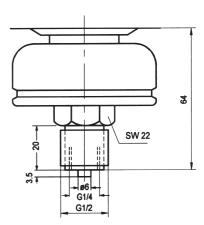


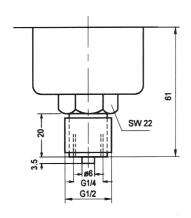
# Dimensioned drawings of pressure sensors

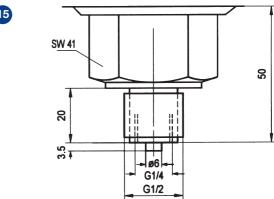




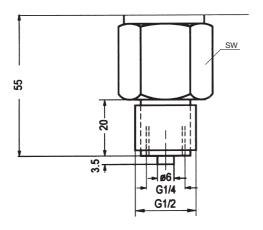




# Dimensioned drawings of pressure sensors



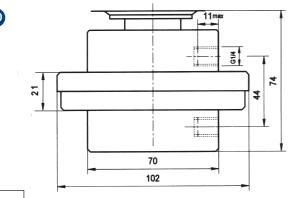




13

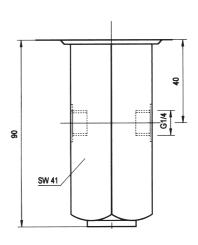












| Dimensioned | SW |
|-------------|----|
| drawing     |    |
|             |    |
| 16          | 22 |
| 17          | 24 |
| 18          | 30 |
| 10          | 32 |



FEMR



21

