CONTROLS (UK) LTD

Fine Controls have been supplying process controls & instrumentation equipment since 1994, & now serves an ever expanding customer base, both in the UK & globally.

We offer a full range of valve & instrumentation products & services, with our product rangerepresenting leading technologies & brands:

Flow: Flow Meters & Transmitters, Flow Switches, Flow Control Valves & Batch Control Systems

Temperature: Temperature Probes & Thermowells, Temperature ransmitters, Temperature Regulators & Temperature Displays

Level: Level Transmitters & Switches

Pressure: Pressure Gauges & Transmitters, Precision & High Pressure Regulators & I-P Converters, Volume boosters.

Precision Pneumatics: Pressure Regulators, I-P Converters, Volume Boosters, Vacuum Regulators

Valves: Solenoid & Pneumatic Valves. Control Valves & Positioners. Actuated Ball, Globe or Diaphragm Valves & Isolation Valves

Services: Repair, Calibration, Panel Build, System Design & Commissioning

burkert

SIEMENS

A rotork Brand

Honeywell

J Z Z

Fine Controls (UK) LTD, Bassendale Road, Croft Business Park, Bromborough, Wirral, CH62 3QL UK Tel: 0151 343 9966

Email: sales@finecontrols.com

- Bypass MFC with capillary technology for nominal flow rates from 5 ml_N/min to 10 l_N/min
- Applicable for aggressive gases
- Fieldbus option

Type 1150

Multi-channel program controller

Type 0330

3/2 or 2/2way solenoid valve

Type 6013

2/2-way solenoid valve

MassFlowCommunicator

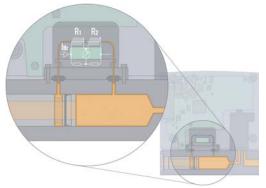
Communications software

Type 8710 controls the mass flow of gases through a sensor element which is not in direct contact with the gas itself. The measured value provided by the sensor (see the description on page 2) will be compared in the digital control electronics with the predefined set point according to the signal; if a control difference is present, the control value output to the proportional valve will be modified using a PI-control algorithm. In this way, the mass flow can be maintained at a fixed value or a predefined profile can be followed, regardless of pressure variations or other changes in the system. Type 8710 can optionally be calibrated for two different gases, the user is able to switch between these two gases.

The control element, a proportional valve working at low friction, guaran-

tees a high sensitivity and a good control characteristics of the unit. Typical application areas are gas dosing or rather the production of gas mixtures in:

- · Heat treatment,
- Metal melting treatment,
- Environmental technology,
- · Material coating and
- · Fuel cell technology.


Technical data			
Full scale ranges ¹⁾ (O _{nom})	5 to 10,000 ml _N /min N ₂ equivalent		
Operating media	neutral, or aggressive gases, others on request		
Max. operating pressure (inlet pressure)	10 bar (145 psi), depending on the orifice of the valve		
Calibration medium	operating gas or air with conversion factor		
Medium temperature	-10 to +70°C		
Ambient temperature	-10 to +50°C		
Accuracy (after 30 min. warm up time)	±1.5% o.R. ±0.3% F.S.		
Linearity	±0.1% F.S.		
Repeatability	±0.1% F.S.		
Control range	1:50		
Settling time (t ₉₅₀₆)	<3 s		
Body material	stainless steel		
Electr. housing material	PC (Polycarbonate)		
Sealing material	FKM, EPDM, FFKM		
Port connections	NPT 1/4, G 1/4, screw-in fitting or sub-base, others on request		
Control valve (proportional valve) valve orifice k _{VS} -value	normally closed 0.05 to 2.0 mm 0.00006 to 0.09 m³/h		
Electr. connection	Sub-D plug 15-pin M12 plug 5-pin (DeviceNet, CANopen) M12 socket, 5-pin (PROFIBUS DP)		

Power supply	24V DC		
Voltage tolerance	±10 %		
Residual ripple	<2 %		
Power consumption	max. 7.5 W, max. 10 W (Fieldbus version)		
Setpoint Feed impedance	0-5 V, 0-10 V, 0-20 mA or 4-20 mA > 20 kΩ (voltage), < 300 Ω (current)		
Output signal Max. current (voltage output) Max. load (current output)	0-5 V, 0-10 V, 0-20 mA or 4-20 mA 10 mA 600 Ω		
Digital communication	PROFIBUS DP, DeviceNet, CANopen, RS232/485 (RS Interface only with adapter)		
Protection class	IP40		
Dimensions [mm]	see drawings		
Total weight	ca. 850 g (stainless steel)		
Mounting position	horizontal or vertical		
Light emitting diode display (default, other allocations possible)	indication for Power, Limit (with analog sig- nals) / Communication (with fieldbus), Error		
Binary input (default, other functions possible)	two 1. start autotune 2. not assigned		
Binary output (default, other functions possible)	one relay-output for 1. setpoint not reached max. load: 25V, 1A, 25VA		

¹⁾ at standard conditions 1.013 bar (a) and 0°C

Measuring principle

The measurement is based on the bypass principle. A laminar flow element in the main channel generates a small pressure drop. This drives a small flow, proportional to the main flow, through the bypass (sensor tube).

Two heater resistors, which are connected in a measuring bridge, are wound on this stainless steel tube. In the zero-flow state, the bridge is balanced, but with flow, heat is transported in the flow direction and the bridge becomes unbalanced.

The dynamics of the measurement is limited by the tube walls, which act as a thermal barrier. Through use of suitable software in the controller, response times are obtained (in the range of a few seconds) that are adequate for a wide range of applications.

With contaminated media we recommend to install filter elements upstream. This avoids changes in the division ratio between main flow and sensor tube, as well as changes in the heat transmission caused by deposits on the walls of the sensor tube.

With these sensors even aggressive gases can be controlled, because all essential parts in contact with the medium are fabricated in stainless steel. With this sensor principle it is also possible to convert between different gases.

$Q(Gas) = f \times Q(N2)$

gas	factor f
N ₂	1.00
Luft	1.00
O_2	0.98
H ₂	1.01
Ar	1.4
He	1.42
CO ₂	0.77

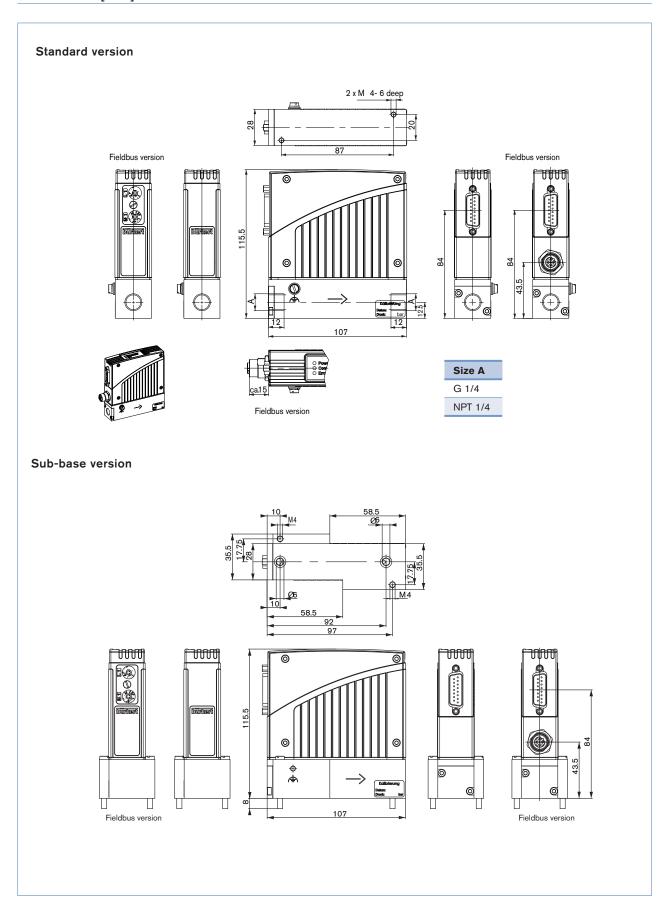
By using the gas factors it is possible that the accuracy is not within the datasheet specification. For applications which need high accuracy it is recommended to calibrate under application conditions.

The compatibility of the sealing materials of the MFCs should be checked before use with another gas.

Notes regarding the selection of the unit

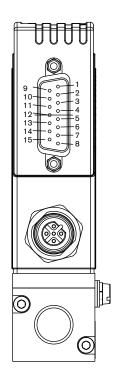
For the proper choice of the actuator orifice within the MFC, not only the required maximum flow rate Ω_{nom} , but also the pressure values *directly* before and after the MFC (p_1, p_2) at this flow rate Ω_{nom} should be known. In general, these pressures are not the same as the overall inlet and outlet pressures of the whole plant, because usually there are additional flow resistors (tubing, additional shut-off valves, nozzles etc.) present both before and after the controller.

Please use the request for quotation form on p. 5 to indicate the pressures $\it directly$ before and after the MFC. If these should be unknown or not accessible to a measurement, estimates are to be made by taking into account the approximate pressure drops over the flow resistors before and after the MFC, respectively, at a flow rate of $\rm O_{nom}$. In addition, please quote the maximum inlet pressure $\rm p_{1max}$ to be encountered. This data is needed to make sure the actuator is able to provide a close-tight function within all the specified modes of operation.

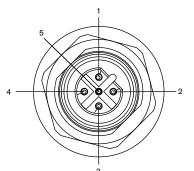

▶ The request for quotation form on page 5 contains the relevant fluid specification. Please use in this way the experience of Bürkert engineers already in the design phase and provide us with a copy of the request containing the data of your application together with your inquiry or order.

Ordering table for accessories (connectors are not included in the delivery)

Article	Item no.	
15-pin electrical connection		
Sub-D socket 15-pin solder connection	918 274	
Sub-D hood for Sub-D socket, with screw locking	918 408	
Sub-D socket 15-pin with 5m cable, ass. on one side	787 737	
Sub-D socket15-pin with 10m cable, ass. on one side	787 738	
PROFIBUS DP		
M12 socket direct	918 198	
M12 socket (coupling) direct	918 447	
PROFIBUS T-connector	902 098	
Adapter		
RS232 Adapter	654 748	
RS485 Adapter	654 538	
PC cable for RS232 9-pin socket/plug 2m	917 039	
USB Adapter	670 639	
Communication software MassFlowCommunicator	Info at www.burkert.com	

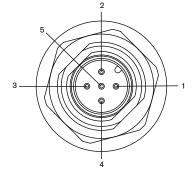

burkert

Dimensions [mm]


Pin Assignment

Sub-D plug 15-pin

Pin	Connection
1	Relay output - NC contact
2	Relay output - NO contact
3	Relay output - C contact
4	GND 24 -V-supply and binary inputs
5	24 V supply +
6	8 V output (For factory use only!)
7	Setpoint input GND
8	Setpoint input +
9	Process value output GND
10	Process value output +
11	DGND (for RS232)
12	Binary input 1
13	Binary input 2
14	RS232 RxD (without driver)
15	RS232 TxD (without driver)



(DPV1 max. 12 Mbaud)

Pin	Connection
1	VDD
2	RxD / TxD - N (A-line)
3	DGND
4	RxD / TxD - P (B-line)
5	not used

PROFIBUS DP - socket B-encoded M12

DeviceNet, CANopen - plug M12

Pin	Belegung
1	Shield
2	not used
3	DGND
4	CAN_H
5	CAN_L

MFC/MFM applications - request for quotation

▶ Please fill out and send to your nearest Bürkert sales centre* together with your inquiry or order

Vau cal	n fill out
you ca	ds directly
in the F	DF file
in the	printing

Note

Company		Contact pers	son		
Customer No.			Department		
Address		Tel./Fax			
Postcode/Town		E-mail			
MFC-application MFM-application	on Quanti	ty		Required delivery date	
Medium data					
Type of gas (or gas proportion in mixtures)					
Density [kg/m³] 1)					
Medium temperature [°C or °F]		°C] °F	
Moisture content [g/m³]					
Abrasive components / solid particles	no		yes as follows	s	
Fluidic data					
riuidic data					
Maximum flow $\mathbf{Q}_{_{\mathrm{nom}}}$		I _N /min 1)		cm _N ³ /min ¹⁾	
		m_N^3/h^{-1}		cm _s ³ /min (sccm) ²⁾	
		kg/h] I _s /min (slpm) ²⁾	
Minimum flow $\mathbf{Q}_{_{\mathrm{nom}}}$		I _N /min 1)		cm _N ³ /min ¹⁾	
		m_N^3/h^{-1}		cm _s ³ /min (sccm) ²⁾	
		kg/h] I _s /min (slpm) ²⁾	
Inlet pressure at Q_{nenn} $p_1 =$		barg ■			
Outlet pressure at Q_{nenn} $p_2 =$		barg ■			
Max. inlet pressure p_{1max}		barg ■			
Pipe run (external-Ø)		metric, mm		imperial, inch	
MFC/MFM- port connection	without screw-	in fitting			
	1/4" threa	ad G-thread (DI	N ISO 228/1)		
	1/4" threa	ad NPT-thread ((ANSI B1.2)		
	with screw-in f	itting			
	sub-base version	on			
Ambient temperature		°C			
Material data					
Sealing material	FKM [EPDM	FFKM		
Electrical data					
Output/Input signal Stand	ard signal			with Fieldbus	
o o	5 V 10 V 20 mA 20 mA	Input	V mA mA	PROFIBUS-DP DeviceNet CANopen	
1) at: 1.013 bar (a) and 0°C 2) at: 1.0	013 bar (a) and 20°C				
To find your nearest Bürkert facility, click on the	orange box → ww	w.buerkert.co	m		
In case of special application conditions, please consult for advice.	Subject to alteration © Christian Bürkert Gmbl	H & Co. KG		0904/2_EU-en_00891883	